CUDA Programming

Week 1. Basic Programming Concepts

Materials are copied from the
reference list

G80/G92 Device

e SP: Streaming Processor (Thread Processors)
e SM: Streaming Multiprocessor

— 128 SP grouped into 16 SMs
 TPC: Texture Processing Clusters

Host |

Input Assembler | l | Setup/ Rstr | ZCull

. Vix Thread Issue -Gmlissue- Pixel Thread lssue l

[
EO)ED (ECED
0
I o o
CICIIEIE]

5 5

= Thread Processor

CUDA Programming Model

 The GPU is a compute device
— serves as a coprocessor for the host CPU
— has its own device memory on the card
— executes many threads in parallel
e Parallel kernels run a single program in many
threads
— GPU expects 1000’s of threads for full utilization

CUDA Programming Kernels

Device = GPU
Host = CPU

Kernel = function called from the host that
runs on the device

— One kernel is executed at a time
— Many threads execute each kernel

CUDA Threads

A CUDA kernel is executed by an array of threads
— All threads run the same code
— Each thread hasan ID

 Compute memory addresses

. . th dID
e Make control decisions red

 CUDA threads are extremely \\\\\\\\

Iightweight Eloat x = input[threadID];

float y = funec(x);
output [threadID] = y;

— Very little creation overhead

~ instant switching TR

Thread Batching

e Kernel launches a grid of thread blocks

— Threads within a block can
* Share data through shared memory
* Synchronize their execution

— Threads in different block cannot cooperate

Grid

Thread Block 0 Thread Block 1 Thread Block N-1

QU | L]+ |

Shared Memory Shared Memory Shared Memory

Thread ID

Each thread has access to:

— threadldx.x
— blockldx.x -

- thread ID within block
block ID within grid

— blockDim.x - number of threads per block

blockldx.x
blockDim.x =5

threadldx.x

Grid

oSN\ =
oSN N
w/ N\
N\

R

o/
NV
w/ N\
s N\
o/
NV

blockldx.x*blockDim.x
+ threadldx.x

01 2 3 4 5 6 7 8 9 10 11 1213 14

Multidimensional IDs

e Block ID: 1D or 2D
* Thread ID: 1D, 2D, or 3D

Device

Grid 1

* Simplifies memory o

addressing for processing 00 L 49 L @0
. g . Block || Block || Block
multidimensional data e | an e

— We will talk about it later

Block (1, 1)

Thread | Thread | Thread | Thread | Thread
(0, (1, (2,0 (30 (4,

— | Thread | Thread | Thread | Thread | Thread

(0, 1) i1, 1) 2, 1 30 (4, 1)

Thread | Thread | Thread | Thread | Thread
(0,2 i1, 2) i2,2) (32 (4, 2)

Kernel Memory Access

Registers Grid
Global Memory Block (0, 0) Block (1, 0)
— Kernel input and output
data reside here
— Off-chip, large, uncached ’ ’ ’ ’
Sh 3 red Memory Thread (0, 0) | Thread (1, 0)|| | Thread (0, 0) Thread (1, 0)
1 1 1 1
Tinasingle block -
in a single block

— On-chip, small, as fast as registers

The host can read & write global memory but not
shared memory

Execution Model

Host

Device

Grid 0

Block (0, 0)

Block (1, 0)
)

Block (2, 0)

Block (0, 1)

Block (1, 1)

3,

Block (2, 1)
3333 >
22
44

Device

Grid 1

Block (0, 0)

Block (1, 0)

Block (0, 1)

Block (1, 1)

Block (0, 2)

Block (1, 2)

 Kernels are launched in
grids
— One kernel executes at a
time
* A block executes on one
multiprocessor

— Does not migrate

© Block (1, 1)

Programming Basics

Outline

New stuffs
Executing codes on GPU
Memory management

— Shared memory

Schedule and synchronization

NEW STUFFS

C Extension

* New syntax and built-in variables

* New restrictions
— No recursion in device code
— No function pointers in device code

* APIl/Libraries
— CUDA Runtime (Host and Device)
— Device Memory Handling (cudaMalloc,...)
— Built-in Math Functions (sin, sqrt, mod, ...)
— Atomic operations (for concurrency)
— Data types (2D textures, dim2, dim3, ...)

New Syntax

<<<L L, >>>
__host_, global
__constant__ , shared

__syncthreads()

device

/)

device

Built-in Variables

dim3 gridDim;

— Dimensions of the grid in blocks(gridDim.z unused)

dim3 blockDim;

— Dimensions of the block in threads

dim3 blockldx;
— Block index within the grid

dim3 threadldx;
— Thread index within the block

dim3 (Based on uint3)
struct dim3{int x,y,z;}

Used to specify dimensions
Default value (1,1,1)

Function Qualifiers

__global __ :called from the host (CPU) code, and run
on GPU

— cannot be called from device (GPU) code
— must return void

__device__ :called from other GPU functions, and run
on GPU

— cannot be called from host (CPU) code
__host__ :called from host, and run on CPU,
__host__and __device_ :

— Sample use: overloading operators

— Compiler will generate both CPU and GPU code

Variable Qualifiers (GPU code)

__device _:stored in global memory (not cached, high
latency)

— accessible by all threads
— lifetime: application
__constant__: stored in global memory (cached)
— read-only for threads, written by host
— Lifetime: application
__shared__:stored in shared memory (like registers)
— accessible by all threads in the same threadblock
— lifetime: block lifetime
Unqualified variables: stored in local memory
— scalars and built-in vector types are stored in registers
— arrays are stored in device memory

EXECUTING CODES ON GPU

~ global

__global__ void minimal(int* d_a)

{
*d a=13;

}

__global__void assign(int* d_a, int value)

{

int idx = blockDim.x * blockldx.x + threadldx.x;
d_alidx] = value;

}

Launching kernels

 Modified C function call syntax:
kernel<<<dim3 grid, dim3 block>>>(...)

— Execution Configuration (“<<< >>>"):
— grid dimensions: x and y
— thread-block dimensions: x, y, and z

EX: VecAdd

 Add two vectors, A and B, of dimension N, and
put result to vector C

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)

{
int i = threadldx.x;
C[i] = A[i] + B[i];

}

int main()

{...

// Kernel invocation
VecAdd<<<1, N>>>(A, B, C);

EX: MatAdd

 Add two matrices, A and B, of dimension N,
and put result to matrix C

// Kernel definition

__global __ void MatAdd(float A[N][N], float B[N][N], float C[N][N]){
int i = threadldx.x;
int j = threadldx.y;
Clil[j] = Ali][j] + B[i][j];

}

int main(){

// Kernel invocation
dim3 dimBlock(N, N);
MatAdd<<<1, dimBlock>>>(A, B, C);

Ex: MatAdd

// Kernel definition
__global __ void MatAdd(float A[N][N], float B[N][N],float C[N][N]){
int i = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;
if (i <N &&j<N)
C[il[j] = Ali][j] + B[i][jl;
}

int main(){

// Kernel invocation
dim3 dimBlock(16, 16);
dim3 dimGrid((N + dimBlock.x — 1) / dimBlock.x,

(N + dimBlock.y — 1) / dimBlock.y);
MatAdd<<<dimGrid, dimBlock>>>(A, B, C);

Executing Code on the GPU

* Kernels are C functions with some restrictions
— Can only access GPU memory
— Must have void return type
— No variable number of arguments (“varargs”)
— Not recursive
— No static variables

* Function arguments automatically copied
from CPU to GPU memory

Compiling a CUDA Program

C/C++ CUDA
Application

Virtual PTX
Code

C/C++ Code

CPU GPU
Instructions Instructions

Compiled files

be

PP

¢.cu

cudafe

.C;

nvopencc

.stub.c
>
.gpu.c

pix

cpp => linker

cpp ——> linker
.cubin

ptxas cubin

MEMORY MANAGEMENT

Managing Memory

* Host (CPU) code manages device (GPU)
memory:

— Applies to global device memory (DRAM)
e Tasks

— Allocate/Free
— Copy data

GPU Memory Allocation / Release

* cudaMalloc(void ** pointer, size_t nbytes)

 cudaMemset(void * pointer, int value, size t count)

e cudaFree(void* pointer)

» cudaMalloc()

— Allocates object in the device

— Two parameters

« Address of a point®>o the
allocated object

» Size of of allocated object

« cudaFree|()

— Frees object from device Glob:

Host
Al

Memory
» Pointer to freed object

Grid

Block (0, 0)

] |

Block (1, 0)

o]

Thread (0, 0)|

Thread (1, 0)

Thread (0, 0) Thread (1, 0)

Data Copies

e cudaMemcpy(void *dst, void *src, size_t
nbytes, enum cudaMemcpyKind direction);

— enum cudaMemcpyKind
e cudaMemcpyHostToDevice
e cudaMemcpyDeviceToHost
* cudaMemcpyDeviceToDevice

— Blocks CPU thread: returns after the copy is
complete

— Doesn’t start copying until previous CUDA calls
complete

Ex: VecAdd

// Device code

__global__ void VecAdd(float* A, float™ B, float™ C){
int i = blockDim.x * blockldx.x + threadldx.x;
if (i < N) C[i] = A[i] + BJ[i];

}

// Host code

int main() {
intN=...;
size_t size = N * sizeof(float);
// Allocate input h_A and h_B in host memory
float* h_A = malloc(size);
float* h_B = malloc(size);
// Allocate vectors in device memory
float *d_A, *d_B, *d_C;
cudaMalloc((void**)&d_A, size);
cudaMalloc((void**)&d_B, size);
cudaMalloc((void**)&d_C, size);

// Copy vectors from host memory to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid = (N+threadsPerBlock — 1)/threadsPerBlock;

VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C);

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

Shared Memory

e shared__ :variable qualifier
* EX: parallel sum

__global __ void reduce0O(int *g_idata, int *g_odata) {
__shared__ int sdata[N];
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idatali];
// do reduction in shared mem

// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Dynamic Shared Memory

* When the size of the shared memory is
determined in the runtime.

__global __ void reduce0O(int *g_idata, int *g_odata) {
extern __shared _ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idatali];
// do reduction in shared mem

// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

How to decide the SM size?

 When CPU launches kernel function, the 3"
argument specify the size of the shared
memory.

kernel<<<gridDim, blockDim,SMsize>>>(...)

SYNCHRONIZATION

Host Synchronization

* All kernel launches are asynchronous
— control returns to CPU immediately

— kernel executes after all previous CUDA calls have
completed

* cudaMemcpy() is synchronous
— control returns to CPU after copy completes

— copy starts after all previous CUDA calls have
completed

e cudaThreadSynchronize()
— blocks until all previous CUDA calls complete

Device Runtime Synchronization

« void __syncthreads();

* Synchronizes all threads in a block

— Once all threads have reached this point,
execution resumes normally

— Used to avoid RAW / WAR / WAW hazards when
accessing shared

* Allowed in conditional code only if the

conditional is uniform across the entire thread
block

Values (shared memory)

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Ex: Parallel summation

10 8|-110]-2]3 2312|7011]0

v] : / i / i /] ~) é / E /
11 701-1-2]|-2] 8 S (-39 |7 [11]11] 2
18 7/-116]-2]8 4 (-39 |7 [13[11] 2

-2 | 8 17| -3 (9 [7 |13 |11 | 2
41 7/-116]-2]8 17| -3 (9 [7 |13 |11 | 2

Ex: Parallel summation

__global__ void reduceO(int *g_idata, int *g_odata) {

extern __shared _ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idatal[i];
__syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *=2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Homework

* Read programming guide chap 1 and chap 2

* Implement matrix-matrix multiplication.
— C=A*B, where A,B,C are NxN matrices.
— Cli][j]=sum_{k=1,...,N} A[i][k]*B[k][j]
— Let each thread compute one C|i][j]

— Try (1) not to use shared memory and (2) use
shared memory

