
CUDA Programming

Week 1. Basic Programming Concepts

Materials are copied from the
reference list

G80/G92 Device

• SP: Streaming Processor (Thread Processors)
• SM: Streaming Multiprocessor

– 128 SP grouped into 16 SMs

• TPC: Texture Processing Clusters

CUDA Programming Model

• The GPU is a compute device

– serves as a coprocessor for the host CPU

– has its own device memory on the card

– executes many threads in parallel

• Parallel kernels run a single program in many
threads

– GPU expects 1000’s of threads for full utilization

CUDA Programming Kernels

• Device = GPU

• Host = CPU

• Kernel = function called from the host that
runs on the device

– One kernel is executed at a time

– Many threads execute each kernel

CUDA Threads

• A CUDA kernel is executed by an array of threads

– All threads run the same code

– Each thread has an ID

• Compute memory addresses

• Make control decisions

• CUDA threads are extremely
lightweight

– Very little creation overhead

– Instant switching

Thread Batching

• Kernel launches a grid of thread blocks

– Threads within a block can

• Share data through shared memory

• Synchronize their execution

– Threads in different block cannot cooperate

Thread ID

• Each thread has access to:

– threadIdx.x - thread ID within block

– blockIdx.x - block ID within grid

– blockDim.x - number of threads per block

Multidimensional IDs

• Block ID: 1D or 2D

• Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing for processing
multidimensional data

– We will talk about it later

Kernel Memory Access

• Registers

• Global Memory
– Kernel input and output

data reside here

– Off-chip, large, uncached

• Shared Memory
– Shared among threads

in a single block

– On-chip, small, as fast as registers

• The host can read & write global memory but not
shared memory

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Execution Model
• Kernels are launched in

grids

– One kernel executes at a
time

• A block executes on one
multiprocessor

– Does not migrate

Programming Basics

Outline

• New stuffs

• Executing codes on GPU

• Memory management

– Shared memory

• Schedule and synchronization

NEW STUFFS

C Extension

• New syntax and built-in variables

• New restrictions
– No recursion in device code

– No function pointers in device code

• API/Libraries
– CUDA Runtime (Host and Device)

– Device Memory Handling (cudaMalloc,...)

– Built-in Math Functions (sin, sqrt, mod, ...)

– Atomic operations (for concurrency)

– Data types (2D textures, dim2, dim3, ...)

New Syntax

• <<< ... >>>

• __host__, __global__, __device__

• __constant__, __shared__, __device__

• __syncthreads()

Built-in Variables

• dim3 gridDim;

– Dimensions of the grid in blocks(gridDim.z unused)

• dim3 blockDim;

– Dimensions of the block in threads

• dim3 blockIdx;

– Block index within the grid

• dim3 threadIdx;

– Thread index within the block

dim3 (Based on uint3)
struct dim3{int x,y,z;}
Used to specify dimensions
Default value (1,1,1)

Function Qualifiers

• __global__ : called from the host (CPU) code, and run
on GPU
– cannot be called from device (GPU) code
– must return void

• __device__ : called from other GPU functions, and run
on GPU
– cannot be called from host (CPU) code

• __host__ : called from host , and run on CPU,
• __host__ and __device__:

– Sample use: overloading operators
– Compiler will generate both CPU and GPU code

Variable Qualifiers (GPU code)

• __device__: stored in global memory (not cached, high
latency)
– accessible by all threads
– lifetime: application

• __constant__: stored in global memory (cached)
– read-only for threads, written by host
– Lifetime: application

• __shared__: stored in shared memory (like registers)
– accessible by all threads in the same threadblock
– lifetime: block lifetime

• Unqualified variables: stored in local memory
– scalars and built-in vector types are stored in registers
– arrays are stored in device memory

EXECUTING CODES ON GPU

__global__

__global__ void minimal(int* d_a)
{
*d_a = 13;
}

__global__ void assign(int* d_a, int value)
{
int idx = blockDim.x * blockIdx.x + threadIdx.x;
d_a[idx] = value;
}

Launching kernels

• Modified C function call syntax:

kernel<<<dim3 grid, dim3 block>>>(…)

– Execution Configuration (“<<< >>>”):

– grid dimensions: x and y

– thread-block dimensions: x, y, and z

EX: VecAdd

• Add two vectors, A and B, of dimension N, and
put result to vector C

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

}
int main()
{...

// Kernel invocation
VecAdd<<<1, N>>>(A, B, C);

}

EX: MatAdd

• Add two matrices, A and B, of dimension N,
and put result to matrix C

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]){

int i = threadIdx.x;
int j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}
int main(){

...
// Kernel invocation
dim3 dimBlock(N, N);
MatAdd<<<1, dimBlock>>>(A, B, C);

}

Ex: MatAdd

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],float C[N][N]){

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];
}
int main(){

...
// Kernel invocation
dim3 dimBlock(16, 16);
dim3 dimGrid((N + dimBlock.x – 1) / dimBlock.x,

(N + dimBlock.y – 1) / dimBlock.y);
MatAdd<<<dimGrid, dimBlock>>>(A, B, C);

}

Executing Code on the GPU

• Kernels are C functions with some restrictions

– Can only access GPU memory

– Must have void return type

– No variable number of arguments (“varargs”)

– Not recursive

– No static variables

• Function arguments automatically copied
from CPU to GPU memory

Compiling a CUDA Program

Compiled files

MEMORY MANAGEMENT

Managing Memory

• Host (CPU) code manages device (GPU)
memory:

– Applies to global device memory (DRAM)

• Tasks

– Allocate/Free

– Copy data

GPU Memory Allocation / Release

• cudaMalloc(void ** pointer, size_t nbytes)

• cudaMemset(void * pointer, int value, size_t count)

• cudaFree(void* pointer)

Data Copies

• cudaMemcpy(void *dst, void *src, size_t
nbytes, enum cudaMemcpyKind direction);
– enum cudaMemcpyKind

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

– Blocks CPU thread: returns after the copy is
complete

– Doesn’t start copying until previous CUDA calls
complete

Ex: VecAdd
// Device code
__global__ void VecAdd(float* A, float* B, float* C){

int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) C[i] = A[i] + B[i];

}

// Host code
int main() {

int N = ...;
size_t size = N * sizeof(float);
// Allocate input h_A and h_B in host memory
float* h_A = malloc(size);
float* h_B = malloc(size);
// Allocate vectors in device memory
float *d_A, *d_B, *d_C;
cudaMalloc((void**)&d_A, size);
cudaMalloc((void**)&d_B, size);
cudaMalloc((void**)&d_C, size);

// Copy vectors from host memory to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid = (N+threadsPerBlock – 1)/threadsPerBlock;

VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C);

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

}

Shared Memory

• __shared__ : variable qualifier

• EX: parallel sum

__global__ void reduce0(int *g_idata, int *g_odata) {
__shared__ int sdata[N];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
// do reduction in shared mem
…
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Dynamic Shared Memory

• When the size of the shared memory is
determined in the runtime.

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
// do reduction in shared mem
…
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

How to decide the SM size?

• When CPU launches kernel function, the 3rd

argument specify the size of the shared
memory.

kernel<<<gridDim, blockDim,SMsize>>>(…)

SYNCHRONIZATION

Host Synchronization

• All kernel launches are asynchronous
– control returns to CPU immediately

– kernel executes after all previous CUDA calls have
completed

• cudaMemcpy() is synchronous
– control returns to CPU after copy completes

– copy starts after all previous CUDA calls have
completed

• cudaThreadSynchronize()
– blocks until all previous CUDA calls complete

Device Runtime Synchronization

• void __syncthreads();

• Synchronizes all threads in a block
– Once all threads have reached this point,

execution resumes normally

– Used to avoid RAW / WAR / WAW hazards when
accessing shared

• Allowed in conditional code only if the
conditional is uniform across the entire thread
block

Ex: Parallel summation

Ex: Parallel summation

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

}
__syncthreads();

}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Homework

• Read programming guide chap 1 and chap 2

• Implement matrix-matrix multiplication.

– C=A*B, where A,B,C are NxN matrices.

– C[i][j]=sum_{k=1,...,N} A[i][k]*B[k][j]

– Let each thread compute one C[i][j]

– Try (1) not to use shared memory and (2) use
shared memory

