
CUDA Programming

Week 1. Basic Programming Concepts

Materials are copied from the 
reference list



G80/G92 Device

• SP: Streaming Processor (Thread Processors)
• SM: Streaming Multiprocessor

– 128 SP grouped into 16 SMs

• TPC: Texture Processing Clusters 



CUDA Programming Model

• The GPU is a compute device

– serves as a coprocessor for the host CPU

– has its own device memory on the card

– executes many threads in parallel

• Parallel kernels run a single program in many 
threads

– GPU expects 1000’s of threads for full utilization



CUDA Programming Kernels

• Device = GPU

• Host = CPU

• Kernel = function called from the host that 
runs on the device

– One kernel is executed at a time

– Many threads execute each kernel



CUDA Threads

• A CUDA kernel is executed by an array of threads

– All threads run the same code

– Each thread has an ID

• Compute memory addresses

• Make control decisions

• CUDA threads are extremely 
lightweight

– Very little creation overhead

– Instant switching



Thread Batching

• Kernel launches a grid of thread blocks

– Threads within a block can 

• Share data through shared memory

• Synchronize their execution

– Threads in different block cannot cooperate



Thread ID

• Each thread has access to:

– threadIdx.x - thread ID within block

– blockIdx.x - block ID within grid

– blockDim.x - number of threads per block



Multidimensional IDs

• Block ID: 1D or 2D

• Thread ID: 1D, 2D, or 3D

• Simplifies memory 
addressing for processing 
multidimensional data

– We will talk about it later



Kernel Memory Access

• Registers

• Global Memory
– Kernel input and output 

data reside here

– Off-chip, large, uncached

• Shared Memory
– Shared among threads 

in a single block

– On-chip, small, as fast as registers

• The host can read & write global memory but not 
shared memory
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Execution Model
• Kernels are launched in 

grids

– One kernel executes at a 
time

• A block executes on one 
multiprocessor

– Does not migrate



Programming Basics



Outline

• New stuffs

• Executing codes on GPU

• Memory management

– Shared memory

• Schedule and synchronization



NEW STUFFS



C Extension

• New syntax and built-in variables

• New restrictions 
– No recursion in device code

– No function pointers in device code

• API/Libraries
– CUDA Runtime (Host and Device)

– Device Memory Handling (cudaMalloc,...)

– Built-in Math Functions (sin, sqrt, mod, ...)

– Atomic operations (for concurrency)

– Data types (2D textures, dim2, dim3, ...)



New Syntax

• <<< ... >>>

• __host__, __global__, __device__

• __constant__, __shared__, __device__

• __syncthreads()



Built-in Variables

• dim3 gridDim;

– Dimensions of the grid in blocks(gridDim.z unused)

• dim3 blockDim;

– Dimensions of the block in threads

• dim3 blockIdx;

– Block index within the grid

• dim3 threadIdx;

– Thread index within the block

dim3 (Based on uint3)
struct dim3{int x,y,z;}
Used to specify dimensions
Default value (1,1,1)



Function Qualifiers

• __global__ : called from the host (CPU) code,  and run 
on GPU
– cannot be called from device (GPU) code 
– must return void

• __device__ : called from other GPU functions, and run 
on GPU
– cannot be called from host (CPU) code

• __host__ : called from host , and run on CPU, 
• __host__ and __device__:

– Sample use: overloading operators
– Compiler will generate both CPU and GPU code



Variable Qualifiers (GPU code)

• __device__: stored in global memory (not cached, high 
latency)
– accessible by all threads
– lifetime: application

• __constant__: stored in global memory (cached)
– read-only for threads, written by host
– Lifetime: application

• __shared__: stored in shared memory (like registers)
– accessible by all threads in the same threadblock
– lifetime: block lifetime

• Unqualified variables: stored in local memory
– scalars and built-in vector types are stored in registers
– arrays are stored in device memory



EXECUTING CODES ON GPU



__global__

__global__ void minimal( int* d_a)
{
*d_a = 13;
}

__global__ void assign( int* d_a, int value)
{
int idx = blockDim.x * blockIdx.x + threadIdx.x;
d_a[idx] = value;
}



Launching kernels

• Modified C function call syntax:

kernel<<<dim3 grid, dim3 block>>>(…)

– Execution Configuration (“<<< >>>”):

– grid dimensions: x and y

– thread-block dimensions: x, y, and z



EX: VecAdd

• Add two vectors, A and B, of dimension N, and 
put result to vector C

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

}
int main()
{...

// Kernel invocation
VecAdd<<<1, N>>>(A, B, C);

}



EX: MatAdd

• Add two matrices, A and B, of dimension N, 
and put result to matrix C

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]){

int i = threadIdx.x;
int j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}
int main(){

...
// Kernel invocation
dim3 dimBlock(N, N);
MatAdd<<<1, dimBlock>>>(A, B, C);

}



Ex: MatAdd

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],float C[N][N]){

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];
}
int main(){

...
// Kernel invocation
dim3 dimBlock(16, 16);
dim3 dimGrid((N + dimBlock.x – 1) / dimBlock.x,

(N + dimBlock.y – 1) / dimBlock.y);
MatAdd<<<dimGrid, dimBlock>>>(A, B, C);

}



Executing Code on the GPU

• Kernels are C functions with some restrictions

– Can only access GPU memory

– Must have void return type

– No variable number of arguments (“varargs”)

– Not recursive

– No static variables

• Function arguments automatically copied 
from CPU to GPU memory



Compiling a CUDA Program



Compiled files



MEMORY MANAGEMENT



Managing Memory

• Host (CPU) code manages device (GPU) 
memory:

– Applies to global device memory (DRAM)

• Tasks

– Allocate/Free

– Copy data



GPU Memory Allocation / Release

• cudaMalloc(void ** pointer, size_t nbytes)

• cudaMemset(void * pointer, int value, size_t count)

• cudaFree(void* pointer)



Data Copies

• cudaMemcpy(void *dst, void *src, size_t
nbytes, enum cudaMemcpyKind direction);
– enum cudaMemcpyKind

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

– Blocks CPU thread: returns after the copy is 
complete

– Doesn’t start copying until previous CUDA calls 
complete



Ex: VecAdd
// Device code
__global__ void VecAdd(float* A, float* B, float* C){

int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) C[i] = A[i] + B[i];

}

// Host code
int main() {

int N = ...;
size_t size = N * sizeof(float);
// Allocate input h_A and h_B in host memory
float* h_A = malloc(size);
float* h_B = malloc(size);
// Allocate vectors in device memory
float *d_A, *d_B, *d_C;
cudaMalloc((void**)&d_A, size);
cudaMalloc((void**)&d_B, size);
cudaMalloc((void**)&d_C, size);



// Copy vectors from host memory to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid = (N+threadsPerBlock – 1)/threadsPerBlock;

VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C);

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

}



Shared Memory

• __shared__ : variable qualifier

• EX: parallel sum

__global__ void reduce0(int *g_idata, int *g_odata) {
__shared__ int sdata[N];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
// do reduction in shared mem
…
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}



Dynamic Shared Memory

• When the size of the shared memory is 
determined in the runtime.

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
// do reduction in shared mem
…
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}



How to decide the SM size?

• When CPU launches kernel function, the 3rd

argument specify the size of the shared 
memory.

kernel<<<gridDim, blockDim,SMsize>>>(…)



SYNCHRONIZATION



Host Synchronization

• All kernel launches are asynchronous
– control returns to CPU immediately

– kernel executes after all previous CUDA calls have 
completed

• cudaMemcpy() is synchronous
– control returns to CPU after copy completes

– copy starts after all previous CUDA calls have 
completed

• cudaThreadSynchronize()
– blocks until all previous CUDA calls complete



Device Runtime Synchronization

• void __syncthreads();

• Synchronizes all threads in a block
– Once all threads have reached this point, 

execution resumes normally

– Used to avoid RAW / WAR / WAW hazards when 
accessing shared

• Allowed in conditional code only if the 
conditional is uniform across the entire thread 
block



Ex: Parallel summation



Ex: Parallel summation

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

}
__syncthreads();

}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}



Homework

• Read programming guide chap 1 and chap 2

• Implement matrix-matrix multiplication.

– C=A*B, where A,B,C are NxN matrices.

– C[i][j]=sum_{k=1,...,N} A[i][k]*B[k][j]

– Let each thread compute one C[i][j]

– Try (1) not to use shared memory and (2) use 
shared memory


